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I distances,  where t h e  decelerator  i s  e n t i r e l y  i n  a subsonic wake, it i s  unstable; 
and ( c )  at  s t i l l  longer t r a i l i n g  distances,  where t h e  decelerator  i s  e s sen t i a l ly  
f u l l y  exposed t o  supersonic flow, it i s  s t ab le  subject only t o  geometry l i m i t a -  
t ions .  
i s  closely r e l a t ed  t o  i t s  s t a b i l i t y  charac te r i s t ics  i n  t h a t  t h e  drag values a re  
g rea t e r  where a decelerator  i s  stable. The 80° cone w i t h  an attached d isk  whose 
diameter i s  10 percent l a rge r  than the  base diameter of t h e  cone has the  highest  
drag coef f ic ien t  values of any of the  s t ab le  decelerators t e s t e d  i n  t h i s  s e r i e s .  
Considerable increase i n  drag-coefficient values can be obtained by increasing 
the  r a t i o  of t h e  decelerator  base diameter t o  the space-vehicle base diameter. 

I n  the  flow behind a space vehicle t he  drag coef f ic ien t  f o r  a decelerator  

INTRODUCTION 

TECHNICAL NOTE D-1789 

AEROlXNAMIC CHARACTERISTICS OF TOWED SPHEXES, 

CONIC& RINGS, AND CONES USED A S  DECELERATORS 

AT MACH NUMBERS FROM 1.57 TO 4.65 

I By Nickolai Charczenko 

An invest igat ion w a s  made t o  determine the  drag and s t a b i l i t y  character is-  
t i c s  of spheres, conical rings, cones, and modified cones when towed i n  t h e  wake 
of several  space-vehicle configurations. The t e s t s  were made over a Mach number 
range of 1.57 t o  4.65 with var ia t ion  i n  t h e  following parameters: Reynolds num- 
ber, t r a i l i n g  distance, r a t i o  of decelerator base diameter t o  space-vehicle base 

1 diameter, cone angle, and s i z e  of disk added t o  t h e  base of a cone. 

The inves t iga t ion  discussed herein i s  pa r t  of an ove ra l l  program t o  study 
possible  decelerator  configurations capable of providing sa t i s f ac to ry  decelera- 
t i o n  performance at supersonic speeds. Such decelerators would be employed f o r  
t h e  recovery of spacecraft ,  launch vehicles, and other  high-speed vehicles.  
Parachutes, bn l lo~ns ,  re t re=rcckets ,  conical ririgs, and ceiies are some of tne  
drag devices t h a t  a r e  being considered as decelerators.  (See r e f s .  1 t o  4.)  
All of these  drag devices have cer ta in  advantages and disadvantages, and t h e  



f i n a l  select ion f o r  a pa r t i cu la r  appl icat ion w i l l  be based upon such f ac to r s  as 
weight, drag coefficient,  s t a b i l i t y ,  and s implici ty  of design. 

~ 

The recovery of space vehicles  by t h e  use of t r a i l i n g  decelerators  has 
created a new requirement f o r  a decelerator  i n  t h a t  it has t o  perform sa t i s f ac to -  , 
r i l y  at very high a l t i t u d e s  and supersonic speeds. Even though t h e  l i f t - d r a g  type 
of configurations may be the  most l i k e l y  choice f o r  many of t he  recovery opera- 
t i o n s  i n  t h e  future,  t h e i r  development w i l l  t ake  time. I n  the  meantime, t r a i l i n g  
decelerators w i l l  f i nd  many uses, and i n  addition, t r a i l i n g  drag devices w i l l  I 
probably f i n d  many continuing appl icat ions i n  t h e  fu ture  pr imari ly  because of 
t h e i r  simplicity.  
extensively with grea t  success a t  subsonic speeds i s  the  parachute, but i t s  appl i -  
cat ion a t  supersonic speeds has been l imited because of i t s  i n s t a b i l i t y  ( r e f .  1). 
O n l y  recently have parachute configurations been developed t h a t  show promise of 
extending parachute operations through t h e  supersonic speed range; however, i n  
t e s t s  of parachutes i n  f r e e  f l i g h t ,  l imited success has been a t ta ined  only up t o  
M, = 2.00. Thus there  i s  a need f o r  fu r the r  invest igat ion with parachutes o r  
o ther  drag devices t h a t  could f u l f i l l  t he  decelerator  requirements i n  the  super- 
sonic speed range. 

~ 

One of t h e  nonlift ing-type drag devices which has been used 

Wind-tunnel t e s t s  ind ica te  considerable promise f o r  both towed balloons 
( r e f .  2)  and cones ( r e f .  3) as decelerators  at supersonic speeds. With t h i s  i n  
mind a group of decelerators  - spheres, conical rings, cones, and modified cones - 
were tes ted  i n  t h e  wake of several  possible  spacecraft  configurations through a 
Mach number range of 1.57 t o  4.65 t o  provide bas ic  drag da ta  and obtain some indi-  
cat ion of t h e i r  s t a b i l i t y .  

I 
SYMBOLS 

a length of decelerator,  i n .  

CD D drag coeff ic ient ,  - 
L S  

D decelerator  drag, lb 

d base diameter of space vehicle, i n .  

dC reference ( m a x i m u m )  diameter of decelerator,  i n .  

df diameter as indicated i n  f igu re  4 

- df x 100 percentage increase i n  base diameter of decelerator  due t o  disk 
df 

2 tow-cable length, i n .  
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Moo 

s, 

r 

S 

e 
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trailing distance i n  terms of space-vehicle base diameters ( f o r  space 
vehicle C, base diameter w a s  t a k e n t o  be 7.0 i n . )  

free-stream Mach number 

free-stream dynamic pressure, lb/sq f t  

radius 

reference area (based on m a x i m u m  cross-sectional area of decelerator) ,  
sq  f t  

decelerator cone angle, deg 

def lect ion angle of f l a p  with respect t o  center l i n e  of space vehicle C, 
deg 

WIND TUNNEL 

The t e s t s  were conducted i n  t he  Langley Unitary Plan wind tunnel, which i s  a 
variable-pressure return-flow tunnel. The tunnel has two t e s t  sections which are 
4 f e e t  square and approximately 7 f e e t  i n  length. 
sect ions a re  asyrmnetric sliding-block-type nozzles which allow t h e  Mach number t o  
be varied continuously through a range from 1.5 t o  2.8 i n  one t e s t  sect ion and 
from 2.3 t o  4.65 i n  the  other .  
i n  reference 5 .  

The nozzles leading t o  the  t e s t  

Further d e t a i l s  of t he  wind tunnel  may be found 

MODELS 

A sketch and photographs of t h e  t e s t  setup are shown i n  f igure  1. The space 
vehicle i s  supported i n  t h e  center of t he  tunnel by two t h i n  struts spanning t h e  
tunnel i n  t h e  horizontal  plane. 

Shown i n  figure 2 i s  a sketch of t h e  three  space vehicles used i n  t h i s  inves- 
' t iga t ion .  They w i l l  be referred t o  hereaf te r  as space vehicles A, B, and C as 
indicated i n  t h e  drawing. 
with iden t i ca l  forebodies. 
having a cy l indr ica l  and t h e  other a f l a r e d  afterbody. Vehicles A and B contained 
an in t e rna l  strain-gage balance t o  which a motor-driven dnun w a s  at tached as indi-  
cated i n  f igu re  3 .  
cable could be shortened o r  lengthened remotely. 

Space vehicles A and B are both bodies of revolution 
They d i f f e r  i n  length and type of afterbody, one 

By means of t h i s  motor-driven drum t h e  1/16-inch s t e e l  tow 

The t h i r d  vehicle i s  a blunt 30' half-cone reentry mnfigdrat icn xlth i3. f ia i  
A t  t he  base it has s i x  f laps ,  as indicated i n  figure 2, which can upper surface.  

be deflected 60° with respect t o  t h e  center l i n e  of t h e  model. 

3 



Spheres, conical rings, cones, and modified cones were used as t r a i l i n g  
decelerators i n  t h i s  invest igat ion.  
a r e  given i n  f igure  4. 
The t r i p  fence w a s  put on t h e  spheres primarily because it i s  needed a t  subsonic 
speeds t o  improve s t a b i l i t y .  However, i t s  contribution t o  s t a b i l i t y  o r  drag a t  
supersonic speeds i s  ins igni f icant  . 

Dimensions and var iables  f o r  these models 
Materials and construction details are shown i n  f igu re  5. 

A l i n e  w a s  attached t o  t h e  r ea r  of a l l  decelerators  as shown i n  f igures  l ( b )  
and l ( c )  t o  s t a b i l i z e  t h e  decelerator  during starting and stopping of t he  tunnel 
and a l s o  t o  prevent t h e  decelerator  from s t r ik ing  t h e  tes t - sec t ion  w a l l  i f  it 
became unstable. 

TESTS AND ACCURACIES 

The t e s t s  were made over a Mach number range from 1.57 t o  4.65 at various 
For t e s t s  t o  determine t h e  Reynolds Reynolds numbers as indicated i n  t a b l e  I. 

number effect ,  var ia t ion  i n  Reynolds number w a s  achieved by changing the  stagna- 
t i o n  pressure. 

The accuracy of t h e  individual quant i t ies  i s  estimated t o  be within the  f o l -  
lowing l imi t s :  

2 , i n .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  k0.5 
M, (1.57 t o  3.50) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  +O.Ol: 
M, ( 3 . 9 6 t o  4.65) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  k0.05~ 
D , l b  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  k0.5C 

RESULTS AND DISCUSSION 

S t a b i l i t y  

The term "stable" as used herein r e fe r s  t o  t h e  dynamic behavior of a par- 
t i c u l a r  decelerator; it means t h a t  any osc i l l a t ing  motion caused by a disturbance 
d ies  out o r  t h a t  t he  decelerator  o s c i l l a t e s  with an amplitude of less than appro2 
imetaly 10  percent of t h e  t r a i l i n g  distance (based on v isua l  observation).  
10-percent o sc i l l a t ion  w a s  a r b i t r a r i l y  s e t  as a l i m i t .  

The 

The s t a b i l i t y  of rigid-type decelerators  i n  t h e  wake of vehicles i s  depender 
primarily on two items: 
geometry of t he  decelerator.  

(1) t h e  flow f i e l d  around t h e  decelerator and (2 )  t h e  

A decelerator  behind a vehicle at supersonic free-stream ve loc i t i e s  has beel 
regarded as having s tab le  charac te r i s t ics  f o r  long trailing distances (decelera- 
t o r  i n  supersonic flow f i e l d )  and unstable charac te r i s t ics  f o r  short  t r a i l i n g  
distances (decelerator  i n  subsonic flow f i e l d ) .  The cur- 
ren t  t e s t s  ind ica te  s t i l l  another region with s tab le  decelerator charac te r i s t ics  
t h e  very short  t r a i l i n g  distance, a t  which a la rge  enough body (decelerator)  i s  

(See r e f s .  3 and 6 . )  
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p a r t l y  i n  a subsonic and pa r t ly  i n  a supersonic flow f i e l d .  
decelerator  t h a t  must be exposed t o  t h e  supersonic flow i n  order t o  produce a 
stable configuration is  not, a t  present, defined. These three  types of flow 
f i e l d s  t h a t  may ex i s t  f o r  a decelerator i n  the wake of a vehicle are i l l u s t r a t e d  
i n  f igure  6. 

The amount of t he  

The dependence of s t a b i l i t y  on t h e  geometry of a decelerator  i s  well  recog- 
For example, towed cones with apex angles up t o  800 were found t o  be nized. I stable i n  a supersonic flow f i e l d  ( r e f .  3 ) ;  however, those having an apex angle 

i of goo o r  l a r g e r  were unstable. 
i n  t h e  present invest igat ion.  A modified 60° cone (see  f i g .  4 )  w a s  very s tab le  
when 
marginally s tab le .  Also, an 80° cone, which w a s  s t ab le  with a disk whose diam- 

~ eter w a s  10 percent l a rge r  than the  base diameter of t he  cone, became unstable 
when t h e  disk diameter w a s  increased t o  15 percent. 
e f f ec t s  on t h e  s t a b i l i t y  of t h e  spheres due t o  t he  t r i p  fence. 

Similar r e su l t s  were observed with conical rings 

w a s  0.347, but when t h i s  r a t i o  was  decreased t o  O.29l the  cone became a dc 1 

There were no noticeable 

rigid-type bodies having blunt f ron ta l  areas such as spheres o r  60° modified 
cones, but t h e  bow shock has l i t t l e  influence on t h e i r  s t a b i l i t y .  

D r a g  Characterist ics 

I The bas ic  drag-coefficient data, and schlieren photographs of t h e  associated 
flow f i e l d s  f o r  some of t h e  drag devices, a re  presented i n  f igures  7 t o  20. A 
comparison of t he  drag coeff ic ients  f o r  t h e  various stable decelerators t e s t ed  

, i s  made i n  figure 21. 

The e f f ec t s  of Reynolds number were determined f o r  t h e  80° cone towed behind 
space vehicles A and B. The resu l t s ,  presented i n  f igu re  7, show t h a t  at  
Moo = 2.30 a change i n  Reynolds number causes a s izable  divergence of drag coef- 
f i c i e n t  with decreasing 2/d. 
coeff ic ient  at  other  t es t  Mach numbers except f o r  t h e  80° cone i n  t h e  wake of 
space vehicle B at a Mach number of 3.50. 

The Reynolds number has l i t t l e  e f f ec t  on drag 

The drag of a decelerator  i s  dependent on the type of flow f i e l d  it i s  in, 
as w a s  previously discussed, which i s  closely re la ted  t o  t h e  t r a i l i n g  distances.  
High drag-coefficient values are obtained f o r  long t r a i l i n g  distances and low 
drag-coefficient values a re  obtained f o r  short  t r a i l i n g  distances.  This phenom- 
enon i s  i l l u s t r a t e d  i n  f igure  9, where typ ica l  schlieren photographs are super- 
imposed on a drag-coefficient p lo t  f o r  a 6-inch sphere i n  the  wake of space vehi- 
c l e  B -at a Mach number of 3.96. It may be seen tha t  t h e  lower drag-coefficient 
values are obtained f o r  t he  short  trailing distances, where t h e  sphere i s  i n  t h e  
subsonic w a k e  of t h e  vehicle, whereas t h e  higher drag-coefficient values are 
obtained when a s igni f icant  port ion of t h e  sphere i s  i n  a supersor?ic f l c l w  f i e id .  
A t r a n s i t i o n  region is  a lso  i l l z s t r a t e d  i n  f igure  9 where e i t h e r  high o r  low 
drag coef f ic ien ts  may be obtained f o r  t h e  6-inch sphere at  Z/d values from 
about 2.63 t o  3.1, depending on t h e  d i rec t ion  from which t h e  decelerator  

i approaches t h i s  region as indicated by t h e  arrows. A t  very short  t r a i l i n g  

I 5 , 



distances  where t h e  decelerator  i s  p a r t i a l l y  i n  subsonic and p a r t i a l l y  i n  super- 1 
sonic flow f i e l d s  it has intermediate drag-coefficient values, as can be seen I 
from figure 8(a) .  
f o r  some of the  configurations at short  t r a i l i n g  distances because of violent  
o sc i l l a t ions  of the  decelerator .  

The data of f igure  8 (b )  show t h a t  f o r  a given space vehicle, t he  l a rge r  t he  
sphere the  grea te r  t he  t r a i l i n g  dis tance at which the  t r a n s i t i o n  occurs from one 
type of flow t o  the  other.  Inspection of t he  schl ieren photographs i n  f igure  10 
shows t h a t  as t h e  sphere approaches t h e  space vehicle,  the  bow shock wave of the  
sphere a f fec ts  t he  t r a i l i n g  shock wave from the  space vehicle.  Where the  e f f e c t  
of t h e  bow shock becomes strong enough, t h e  t r a i l i n g  shock spreads f a r t h e r  out 
from the  center of the  wake, allowing portions of t he  decelerator  t o  be i n  sub- 
sonic f low.  Then, with decreasing t r a i l i n g  distance,  at some point there  i s  a 
sudden change t o  a completely subsonic wake. Further decrease i n  t r a i l i n g  d is -  
tance, fo r  a sphere t h a t  i s  l a rge  i n  comparison with the  base area of t he  space 
vehicle, leads t o  a condition i n  which an appreciable port ion of t he  sphere 
emerges in to  the  supersonic stream. The e f f ec t  of t h e  bow wave of a s m a l l  sphere 
i s  not f e l t  by the  t r a i l i n g  shock of a vehicle  as soon as t h a t  of a l a rge r  sphere. 
Thus t h e  t r a n s i t i o n  f o r  t he  l a r g e r  spheres occurs at l a r g e r  t r a i l i n g  dis tances .  

It should be pointed out t h a t  drag values were not obtained 

1 

The e f f e c t  of t h e  r e l a t i v e  s i zes  of t he  sphere and space vehicle on t h e  drag 
coeff ic ient  i s  shown i n  f igure  8. For example, i n  f igure  8 (b )  at M, = 3.50, 
increasing dc/d from 0.73 t o  1.45 increases CD by as much as 33 percent. 
This r e su l t  would be expected because a smaller percentage of a la rge  decelerator  
i s  acted upon by the  wake from t h e  space vehicle and tow cable. Further indica- 
t i ons  of t h e  e f f ec t  of t he  vehicle  wake on t h e  drag coeff ic ient  of a decelerator  
a r e  seen i n  f igu re  8 (c ) ,  since the re  i s  an appreciable reduction i n  decelerator  
drag when the  control surfaces on t h e  space vehicle a re  def lected.  A compari- 
son between t h e  data  of f igures  8(a) and 8 (b ) ,  on t h e  other  hand, shows t h a t  f o r  
a given sphere s i z e  and tow-cable length the  drag coef f ic ien ts  behind space 
vehicle A are lower at some Mach numbers than those behind vehicle B. This 
result  i s  opposite t o  t h e  above t rend  concerning wake s i z e  but an explanation 
can be obtained from f igure  11. This f igure  shows t h e  decelerator  bow wave much , 
f a r the r  i n  f ron t  of t h e  sphere f o r  space vehicle  A t h a n  f o r  space vehicle  B. 
This difference i s  primarily due t o  t h e  method of attachment of t he  spheres t o  ~ 

t h e  tow l i n e  (see f i g .  5 ) .  I n  e i t h e r  case the  attachment method w a s  not com- 
p l e t e ly  uniform throughout t he  t e s t s  and may have var ied somewhat from one decel- ' 
e ra to r  t o  another; however, t he  swivel on the  tow cable causes a more forward 
separation of t h e  shock and r e su l t s  i n  a more oblique shock wave. The more 
oblique shock s t ruc tu re  f o r  t he  decelerator  behind space vehicle  A w i l l  neces- 
s a r i l y  lead t o  lower pressures and, of course, lower drag coef f ic ien ts  f o r  t h i s  
configuration i n  comparison with t h e  one behind space vehicle B. Thus the  method 1 
of attachment i s  an important f a c t o r  i n  obtaining m a x i m u m  drag f o r  a given decel- 1 
era tor  i n  a supersonic stream. 

I 

Up t o  t h i s  point, o n l y  spheres have been used t o  i l l u s t r a t e  t he  drag- 
coeff ic ient  charac te r i s t ics  of decelerators .  However, t h e  foregoing discussion 
is, i n  general, applicable t o  all decelerators  i n  t h i s  invest igat ion.  
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The drag-coefficient da t a  of f igure  12 indicate  t h a t  conical r ings may be 
e f f ec t ive  drag devices s ince they have re la t ive ly  la rge  drag coeff ic ients .  I n  
addition, t h e  conical ring may be car r ied  with l i t t l e  o r  no weight penalty i n  
the  form of an in t e r s t age  fairing. 
with dc/d = 2.05 and df/d = 1.39, t he re  i s  l i t t l e  o r  no drag-coefficient decre- 
ment with decrease i n  two-line length. This resu l t  indicates  t h a t  there  is  no 
influence of vehicle  wake on t h e  decelerator  and l i t t l e  o r  no e f f e c t  of decel- 
e r a t o r  bow wave on t h e  t r a i l i n g  wake of t he  vehicle.  This r e l a t ive ly  constant 
drag-coefficient value with t r a i l i n g  distance i s  believed t o  preva i l  f o r  df/d 
values down t o  only a l i t t l e  grea te r  than 1. 

I n  t h e  case of t h e  conical-ring decelerator  

Tests performed on a series of modified 60' and 80° cones with and without 
base disks  ( f i g s .  1 4  and 15) show t h a t  the largest  drag coef f ic ien ts  of a s t ab le  
configuration were obtained f o r  an 800 cone w i t h  a disk whose diameter w a s  
10 percent l a r g e r  than the  cone base diameter. Although l a rge r  drag-coefficient 
values could be obtained with a disk having a diameter 15 percent l a rge r  than 
the  cone base diameter, as indicated i n  f igu re  l5(b) at 
r a t i o n  w a s  very unstable.  It should be noted t h a t  a t  some Mach numbers the  drag 
coef f ic ien t  of an 800 cone w a s  increased by as much as 45 percent by addi t ion of 
a disk having a diameter 10 percent l a rge r  than the  base diameter of t he  cone. 

I&, = 2.00, t h i s  configu- 

The va r i a t ion  of drag coeff ic ient  with Mach number f o r  various Z/d values 
i s  cross p lo t t ed  i n  figures 17 t o  20 f o r  t he  convenience of t he  reader.  I n  
general  higher drag-coefficient values were obtained at lower supersonic speeds. 

Shown i n  f igu re  l 7 ( c )  are supersonic da t a  along with some previously unpub- 
l i shed  subsonic da ta  (obtained from t e s t s  i n  t he  Langley 8-foot t ransonic  pres- 
sure tunnel)  f o r  spheres i n  t h e  wake of space vehicle C.  
considerably lower drag-coefficient values f o r  spheres at subsonic Mach numbers. 

This figure shows 

A comparison between the  drag-coefficient values f o r  t h e  various s t ab le  
decelerators  invest igated i s  made i n  f igu re  21. 
diameter i s  10 percent l a r g e r  than the  cone base diameter has t h e  highest  drag 
coef f ic ien ts  throughout t he  t e s t  Mach number range. 
only consideration i n  choosing a decelerator  f o r  a spec i f i c  mission, la rge  drag 
does represent a wider margin i n  trade-off with such f ac to r s  as reduction i n  
s i z e  of decelerator,  which e s sen t i a l ly  means reduction i n  weight. 

The 80° cone with a disk whose 

Even though drag i s  not t he  

CONCLUSIONS 

A wind-tunnel invest igat ion t o  determine the drag and dynamic behavior of 
spheres, conical  rings, cones, and modified cones towed as decelerators  i n  the  
wake of space vehicles  at supersonic speeds leads t o  t h e  following conclusions: 

1. The s t a b i l i t y  of rigid-type decelerators i n  t h e  wake of vehicles  i s  
dependent pr imari ly  on two items: 
t h e  geometry of  t h e  decelerator .  

the  flow f i e l d  around the  decelerator  and 
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2. From visua l  observations i n  t h e  course of t h i s  invest igat ion it w a s  
established t h a t  i n  general t he re  a r e  three  s t a b i l i t y  regions f o r  a decelerator  
i n  t h e  wake of a vehicle: 
decelerators having diameter l a rge r  than t h e  space-vehicle base diameter, por- 
t i ons  of decelerator are  i n  supersonic flow) t h e  decelerator  may be s table;  ( b )  
at s l i gh t ly  longer trailing distances, where t h e  decelerator  i s  e n t i r e l y  i n  a 
subsonic wake, it i s  unstable; and ( c )  a t  s t i l l  longer t r a i l i n g  distances,  where 
the  decelerator i s  essent ia l ly  f u l l y  exposed t o  supersonic flow, it i s  again 
s t ab le  subject only t o  geometry l imi ta t ions .  

(a )  i n  c lose proximity t o  t h e  vehicle base ( f o r  

3 .  I n  the  flow behind a space vehicle t h e  drag coeff ic ient  f o r  a decelerator  
i s  closely re la ted  t o  i t s  s t a b i l i t y  charac te r i s t ics  i n  t h a t  t he  drag values are 
greater  where a decelerator i s  stable. 

4. The 800 cone with an attached disk whose diameter i s  10 percent grea te r  
than the base diameter of t h e  cone has t h e  highest drag-coefficient values of 
any of t h e  s t ab le  decelerators t e s t e d  i n  t h i s  se r ies .  

5 .  Considerable increase i n  drag-coefficient values can be obtained by 
increasing the  r a t i o  of t h e  decelerator  base diameter t o  t h e  space-vehicle base 
diameter. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 14, 1963. 
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TABLE I.- TEST CONDITIONS 

Reynolds 
number 

per foot 

- 

%ch 
mber ’Id 

=we 

70 

---------- 
1.17 X 106 

* 85 
*70 

---------- 
0.95 

-77 - 70 
-77 
.78 
.82 
.95 

-99 
1.05 
1.14 
1.16 

.85 

1.00 

1.09 

1.17 x 106 
.85 
* 70 

2.0-6.0 
------- 
3.0-6.0 
2.0-6.0 
2.0-6.0 
------- 
4.0 

4.0 
2.0-6.0 
4.0 

2.0-6.0 
4.0 
4.0 

4.0 
2.0-6.0 
4.0 
4.0 

3.0-6.0 

2.5-6.0 

2.0-6 .o 

3.0-6.0 

2.0-6.0 
4.0-6.0 

1.18 x lo6 
1.16 

.85 
* 70 

2.0-6.0 -- 
2.0-12.0 5 9  
2.0-12.0 185 
2.0-12.0 139 

Space vehicle A 1 Space vehicle B Space vehicle C 

)ynamlc 
res sure! 
>/sq f t  

Dynamic 
messure, 
.b/sq f t  

Decelerator Reynolds 

per foot 

.-inch sphere 2 .00  
2.50 
2.87 
3 . 0 0  
5-50 
3.96 
k.65 

2.00 
2.50 
2.87 
3.00 

3.96 
C.65 

2.00 
2.30 
2.50 
2.70 
2.87 
2.90 
3.00 
3.20 
3.40 
3-50 
3-70 
3-96 
4.20 
4.40 
4.65 

- 

3-50 

- 

- 
1.57 
2.00 
2.50 
2.87 

1.16 x lo6 2.0-12.0 260 
* 85 2.0-12.0 185 
* 70 2.0-12.0 138 

2.0-12.0 149 .78 
1.00 2.0-12.0 162 
1.05 2.0-1.3.0 154 
1.09 2.0-13.0 126 

257 
185 
137 
149 
162 
154 

258 
185 
137 
148 
162 
154 
126 

126 

2.0-6.0 
2.0-6.0 

L.OO 1.5-6.3 
L.O~ 1.5-6.3 
1-09 1.5-6.3 

2.0-6.0 
2.0-6.0 
1.0-6.0 

1.00 1.0-6.0 
1.05 1.0-6.0 
1.09 1.0-6.0 

3.3-6.3 

1.16 x 106 
.85 
70 
-78 
1.00 
1.05 
1.09 

260 
185 
139 
147 
161 
154 
126 

i-inch sphere 

258 
a 3  
185 
157 
137 
158 
148 
146 
159 
162 
150 
154 
153 
145 
126 

1.16 x lo6 3.0-4.0 
.94 4.0 
.85 2.0-6.0 
* 76 4.0 
70 2.0-6.0 
.81 4.0 - 78 1.0-6.0 
.82 4.0 
* 95 4.0 

1.0-6 .o 1.00 
1.00 4.0 
1.05 1.0-6.0 
1.14 4.0 
1.16 4.0 
1.09 1.0-6.0 

)-inch sphere 

1.18 x lo6 2.0-6.0 --- 
1.16 2.0-12.0 262 
.85 2.0-12.0 185 
70 2.0-12.0 139 

70° conical 
ring 

1-57 
2.00 
2.50 
2.87 

306 
256 
185 
138 

300 conical 
ring 

2.00 
2.30 
2.50 
2.70 
2.87 
2.90 
3-00 
3-20 
3.40 
3-50 
3-70 
3.96 
4.20 
4.40 
4.65 

2.00 
2.50 
2.87 

- 

--- 
214 
185 
159 
139 
161 
149 
146 

I------- ---------- 
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TABLE I.- TEST CONDITIONS - Concluded 

Space vehicle A Space vehicle C Space vehicle B 

Mach 
numbei 

- 
2.00 
2.30 
2.30 
2.50 
2.50 
3.00 
3.00 

3.96 

3.50 
3-50 

3.96 
4.65 
4.65 

2.00 

- 

2.30 
2.50 
2.70 
2.90 
3.00 
3 . m  
3.40 
3-50 
3.70 
3.96 
4.20 
4.40 
4.65 

Dynamic 
ressure 
b/sq f t  

Reynolds 
number 

per foot 

ynamic 
ressure, 
b f s q  f t  

Reynolds 
number 

per foot 

Reynolds 
number 

Dynamic 
ressure, 
b/sq f t  

Decelerator 
2 /a 

range 
I 

00 cone 1.16 x lo6 4.0-12.0 

1.95 4.0-12.0 
1-95 

1.30 4.0-13.0 
2.47 2.0-13.0 

-95 4.0-12.0 

__------ 
---------- -------- 

1.00 4.0-13.0 
3-30 4.0-13.0 
1.05 4.0-14.8 
3.24 6.0-13.0 
1.09 2.0-15.9 
3.99 4.0-13.0 

1.17 x lo6 6.0-12.0 
1.14 6.0-14- 8 

--- 
213 
440 
185 
468 
148 
469 
162 
534 
154 
3 6  
126 
3 7  

258 
a 3  
184 
158 
160 
149 
146 
159 
162 
149 
154 
153 
145 
126 

.-___---_- 
).94 x lot 
-e95 
.85 

2.16 
.78 
?. 47 

. .05 
:.87 
t.09 
2.57 

L.16 x lot  

-. 00 
5.30 

* 95 
.85 
.78 
.78 
.78 
.82 
.95 

1.CO 
* 93 

1.05 
1.07 

1.09 
1.16 

.------ 
5.0-6.0 
5.0-6.0 
5.0-6.0 
5.0-6.0 
L. 0-6.0 
t . o-6.0 
2.0-6.0 
2.7-6.0 
t .  0-6.0 
t.0-6.0 
t . o-6.0 
t .  0-6.0 

5.2-6.7 
4.0 
4.0 
4.0 
4.0 

LO-6. 0 
4.0 
4.0 

4.0 

4.0 
4.0 

2.0-6.0 

2.0-6.0 

2.0-6.0 

IOo cone with 
5-percent 
disk I-------- _-____-___ 

I-------- ----__---- 

!Oo cone with 
10-percent 
disk 

2.00 
2.30 
2.50 
3.00 
3-50 
3.96 
4.65 

2.00 
- 

260 

185 

162 
154 
126 

214 

148 

1.17 x io( 
.95 
.a5 
.78 

1.05 
1.09 

1.00 

5.2-6.8 
3.0-6.0 
3.0-6.0 
2.0-6.0 
3.0-6.0 

t.0-6.0 
+ .0-6.0 

3.74 t .0-4.9 $0' cone with 
15-percent 
disk 

165 

joO modified 
cone 
(a  = 2.67) 

2.00 
2.50 
2.87 

257 
185 
137 

1.16 X lo t  
.85 
* 70 

2.0-6.0 
2.0-6.0 
2.0-6.0 

260 
185 
137 

2.0-6.c 
2.0-5.c 
2.0-5.0 

1.16 x 106 2.0-12.0 
.85 2.0-12.0 
-70 2.0-12.0 

io0 modified 
cone 
(a  = 2.05) 

2.00 
2.50 
2.87 

260 
186 
137 

260 
186 
139 

2.0-6.0 
2.0-6.0 
2.0-6.0 

260 
185 
137 

2.0-12.0 

5.0-10.5 - 70 

2.00 
2.50 
2.87 

2.00 
- 

ioo modified 
cone 
(a = 1.42) 

ioo modified 
cone 
(a  = 2.67) 
with 
10-percent 
disk 

260 
186 
137 

258 
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L-61-6188 
(b)  Space vehicle B mounted on a strut with 80° conical ring attached. 

L- 61- 6186 
( c )  Space vehicle C mounted on a s t r u t  with 8-inch sphere attached. 

Figure 1.- Concluded. 
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S p a c e  V e h i c l e  B 

S p a c e  V e h i c l e  C 

'ct i o n  a n g l e  
f l a p s  was 

e i t h e r  O o o r  60' 
w i t h  r e s p e c t  t o  t h e  
m o d e l  e .  

Figure 2.- Drawing of the three space vehicles used in the investigation. All linear dimensions 
are in inches. 
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C o n i c a l  r i n g s  
80° m o d i f i e d  c o n e s  

S p h e r e s  I C o n i c a l  r i n g s  I 60° m o d i f i e d  c o n e s  I 80° m o d i f i e d  c o n e s  I 

Figure 4. - D r a w i n g  of r igid-decelerator  shapes invest igated.  
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T r a i l i n g  shock  7 / /  

Long t r a i l i n g  distance 

S u b s o n i c  f l o w  field 

S h o r t  t r a i l i n g  distance 

personic f l o w  f ield 

\ 
Very short t r a  i 1 i ng d i s t a n c e  

Figure 6.- Schematic representat ion of various flow f ie lds  at supersonic free-stream ve loc i t ies .  
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( a )  Space vehicle A. 

Figure 7.- Reynolds number e f fec t  on t h e  drag coeff ic ient  of an 80° cone at various Mach numbers. 
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(a) Continued. 

Figure 7.- Continued. 
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( a) Concluded. 

Figure 7.- Continued. 

21 



1. 

1. 

1. 

l / d  

(b) Space vehicle B. 

Figure 7.- Continued. 
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C D  
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(b) Continued. 

Figure 7.- Continued. 
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V d  

(b) Concluded. 

Figure 7.- Concluded. 



0 2 4 6 10 12 14 16 
l d  9 

(a) Spare vehicle A. 

Figure 8.- Variation of drag coeff ic ient  with tow-cable length f o r  4-, 6-, and 8-inch spheres a t  
various Mach numbers. 
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Figure 8.- Continued. 
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Figure 8.- Continued. 
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Figure 8.- Continued. 
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Figure 8.- Continued. 
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Figure 8. - Continued. 
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Figure 8.- Continued. 
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Figure 8.- Continued. 
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Figure 8.- Continued. 
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Figure 8.- Continued. 
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L-63-34 
Z/d f o r  a 6-inch sphere Figure 9.- Variation of drag coefficient and associated flow f i e l d  with 

i n  the  wake of space vehicle B at a Mach number of 3.96. 
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C/d = 4.0, M, = 2.00 C/d = 6.0, M, 2.00 

l / d  I 6.0, M, 2.50 

l / d  = 4.0, M, = 2.87 l / d  5 8.0, Mm 2.87 

L-63-46 
Figure 10.- Typical flow f i e l d s  of spheres i n  the wake of space vehicle A a t  various Mach numbers. 

(8-inch sphere. ) 
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Space vehicle A ,  1.24 in. 
6- inch sphere 

Space vehicle B , 1 = 3 3  in 

Space vehicle A ,  1-19 in. Space vehicle B ,  1 - 2 7  in. 
8-i n c h  sphere 

L-63-47 
Figure U.- Typical flow fields of spheres in the wake of space vehicles A and B at a Mach number 

of 2.87. 
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(a) Space vehicle A; df/d = 1.59. 

Figure 12.- Variation of drag coeff ic ient  with tou-cable length f o r  &lo, TO0, BOo, and 90° conical 
rings a t  various Mach numbers. 
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(a) Continued. 

Figure 12.- Continued. 
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(a )  Concluded. 

Figure 12.- Continued. 

41 



1 

C D  

1 

0 1 2 3 4 5 6 7 8 

l / d  

(b) space vehicle B; df/d = 0.60. 

Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.-  Continued. 
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( c )  Space vehicle C .  

Figure 12. - Continued. 
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Figure 12.- Continued. 
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1 /d  

( C )  C G i i C h d e d .  

Figure 12.- Concluded. 
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e = 60°, Z/d = 6.0, M, = 2.00 

e = 70°, I / d  = 4.0, M- = 2.50 e = 70°, I / d  = 12.0,  M, = 2 .50  

e = EOo, Z/d = 4.0, M, = 2.87 e I EOo, Z/d z 10, M, = 2.87 

(a )  Space vehicle A. ~ 6 j - 4 8  

Figure 13.- Typical f l o w  f i e l d s  about conical rings i n  the  wake of space vehicles A and B at various 
Mach numbers. 
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( a )  Space vehicle A. 

Figure 14.- Variation of drag coef f ic ien t  with tow-cable length f o r  600 modified cones at various 
Mach numbers. 
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(a)  Concluded. 

Figure 14.- Continued. 
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(b)  Space vehicle  B. 

Figure 14.- Continued. 
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(b) Concluded. 

Figure 14.- Continued. 
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( e )  Space vehicle C.  

Figure 14.- Continued. 
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( c )  Continued. 

Figure 14. - Continued. 
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( c) Concluded. 

Figure 14. - Concluded. 



C D  

( a )  Space vehicle A. 

Figure 15.- Variation of drag coef f ic ien t  with tow-cable length f o r  80' modified cone at various 
Mach numbers. 
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(a)  Continued. 

Figure 15. - Continued . 
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(a) Concluded. 

Figure 15.- Continued. 
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(b) Space vehicle  B. 

Figure 15. - Continued. 
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(b)  Continued. 

Figure '15.- Continued. 
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1 /d 

(b)  Continued. 

Figure 15. - Continued. 
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(b)  Concluded. 

Figure 15. - Concluded. 



e I. 600; a = 2.67; Z/d = 5.1 
( d i s k - 1 0 %  increase in diameter) 

e = 60°; a = 2.67; I/d = 10.3 
( d i s k - 1 0 %  increase in d i a m e t e r )  

e = EOo;  I/d = 4.0 e = B O o ;  I/d = 1 2 . 0  

L-63-50 (a) Space vehicle A. 

Figure 16.- Typical flow fields of modified 60° and 80° cones in the wake of space vehicles A and B 
at a Mach number of 2.00. 
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0 = EO", I / d  = 3 . 2  

( d i s k - 5 %  i n c r e a s e  i n  d i a m e t e r )  
0 EO", l / d  = 5 . 8  

( d i s k - 5 %  i n c r e a s e  i n  d i a m e t e r )  

0 80°, L / d  4 . U  

( d i s k - 1 0 %  i n c r e a s e  i n  d i a m e t e r )  
0 = EOu, ! / d  = 5.7 

( d i s k - l O X  i n c r e a s e  i n  d i a m e t e r )  

0 = 800, l / d  = 4 . 0  

( d i s k - 1 5 %  i n c r e a s e  i n  d i a m e t e r )  
0 800, I / d  = 4 . 9  

( d i s k - 1 5 %  i n c r e a s e  i n  d i a m e t e r )  

(b) Space vehicle B. 

Figure 16.- Concluded. 

~63-51 



4 .4  4 . 0  5 . 2  
M, 

(a) Space vehicle  A. 

Figure 17.- Variation of drag coeff ic ient  with Mach numbers for 4-, 6-, and 8-inch spheres at var- 
ious tow-cable lengths.  
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(b) Space vehicle  B. 

Figure 17.- Continued. 
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( c )  Space vehicle  C.  

Figure 17.- Continued. 
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MCV 

(c) Concluded. 

Figure 17.- Concluded. 
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(a )  Space vehicle  A. 

Figure 18.- Variation of drag coeff ic ient  with Mach numbers for 60°, TO0, BOo, and 90' conical 
rings at various tow-cable lengths.  



(b)  Space vehicle B. 

Figure 18. - Continued. 



M, 

(e) Space vehicle C. 

Figure 18.- Concluded. 
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(a )  Space vehicle A. 

Figure 19.- Variation of drag coef f ic ien t  with Mach number for  60° modified cones a t  various tow- 
cable lengths. 
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MCV 

(b) Space vehicle B. 

Figure 19.- Continued. 
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Figure 19.- Concluded. 
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M, 

(5) spsce vel i ic~e  a. 

Figure 20.- Concluded' 
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2.  2rP+---- I 

2.0 

0 8 - i n c h  s p h e r e  
0 8 0 °  c o n i c a l  r i n g  
0 80° cone 
A 80° cone w i t h  5 - p e r c e n t  d i s k  
k 80° cone w i t h  1 0 - p e r c e n t  d i s k  

1. 

1. 

1. 

CD 

1. 

1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 
Mach number,  M, 

(a )  Space vehicle  A. 

Figure 21.- Comparison of drag coeff ic ients  for various s t a b l e  decelerators  through a Mach number 
range. 
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(b) Space vehicle B. 

Figure 21. - Concluded. 
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